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Preface

Cells are systems. Standard engineering and mathematics texts should provide an excellent intro-
duction to understanding how cells behave, mapping inputs to outputs. Unfortunately, cells are
not linear, time-independent systems. Saturation and cooperative response break linearity. Cellular
states change with time. Cells are not even deterministic, violating the assumptions of non-linear
systems analysis.

This book provides a self-contained introduction to cells as non-linear, time-dependent, stochas-
tic, spatial systems. Each major section is motivated by a canonical biological pathway or phe-
nomenon that requires the introduction of new concepts. All the required mathematical techniques
are developed from the motivating examples.

The book is designed as a text for advanced undergraduate or graduate students. Prerequisites
are univariate calculus, linear algebra, basic molecular biology, and rudimentary facility with a
programming language for computational experiments. Linear systems and Laplace transforms are
helpful, but are also reviewed in the initial chapters. Each chapter is designed to be covered in an
hour lecture, and problems are provided in an Appendix.

This book is developed from course notes for “Systems Bioengineering III: Genes to Cells,”
taught by me since 2007 as a required course for our B.S. in Biomedical Engineering.

Joel S. Bader, Baltimore, MD
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Cells as Linear Systems
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Chapter 1

Cellular Signal Transduction
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Chapter 2

Linear Systems Analysis

We left off last time with a model for a two-state biological signaling element,

(d/dt)x(t) = β (t)−αx(t).

Here, x(t) represents the concentration of the active form of a signaling molecule, usually meaning
it is phosphorylated. The input is β (t), and we consider it to be under our control. The rate that the
activate form reverts to the inactive form is α .

Formally, we could write the solution as

[(d/dt)+α]x(t) = β (t);

x(t) = [(d/dt)+α]−1
β (t).

The problem is that we don’t know what it means to take the inverse of an operator like the time
derivative operator d/dt.

This is a lot like solving a matrix equation,

Ax = b−αx.

I use capital bold letters to indicate matrices and lower case bold to indicate column vectors. Ele-
ments of matrices and vectors are not bold, Ai j and xi, We think about discretizing time so instead
of x(t) we have a vector x with elements xn = x(n∆t).

If we want this to be our actual problem, then A should be the time derivative operator in
discrete form. Just to show you how we can do this, use the symmetric form

(d/dt)xn = [xn+1− xn−1]/2∆t.

We also know that
(d/dt)xn = ∑

n′
Ann′xn′ = An,n+1xn+1−An,n−1xn−1.

3



4 CHAPTER 2. LINEAR SYSTEMS ANALYSIS

An,n′ = (1/2∆t)(δn′,n+1−δn′,n−1).

The discrete or Kronecker δ -function is 1 if its arguments are the same and 0 otherwise. One way
to picture A is a tridiagonal matrix with 1’s in the diagonal above the main diagonal, 0’s in the main
diagonal, and −1’s in the diagonal below the main diagonal.

Formally, we could solve the algebraic equation as

x = [A+αI]−1x.

The matrix I is the identity matrix, with Inn′ = δnn′ using our friend the δ -function. We wouldn’t
want to solve this by hand though because taking an inverse of a large matrix is difficult.

Instead this is why we learned about eigenvectors and eigenvalues because they change the
matrix inverse into a scalar inverse. We’re going to do exactly the same thing here by thinking
about eigenfunctions and eigenvalues.

An operator A operates on a function f (t) to give a new function A f (t) = g(t). We will limit
ourselves to operators that we could express as matrices if we made time discrete. The main
operator we will consider is the time derivative operator d/dt. We will simplify our problem is we
can express everything in terms of eigenfunctions of d/dt, functions for which

(d/dt) f (t) ∝ f (t).

The proportionality constant could be any scalar. Pure exponentials are eigenfunctions of d/dt,

(d/dt)eλ t = λeλ t .

We use λ because everyone knows that λ is the name of a generic eigenvalue. Just the same way
that a matrix can have many different eigenvectors, each with a different eigenvalue, an operator
can have many eigenfunctions. Here we have an infinite number.

We could index each eigenfunction by its eigenvalue, fλ (t) = eλ t . If λ is pure real, then we
have functions that grow or decay with time. We’ll start instead with eigenvalues that are pure
imaginary, λ = iω , because Fourier transforms seem more symmetric than Laplace transforms.
Our convention is to think about basis functions φω(t) = eiωt .

Now really we could have any scalar in front of φωt and it would still have the same eigen-
value iω . This is the same as with eigenvectors where we fix the overall scale by insisting that
eigenvectors are normalized to have a dot product of 1. Actually we want their dot products to be
orthonormal. For functions, rather than the dot product, we use the inner product,

〈 f (t)|g(t)〉 ≡
∫

∞

−∞

dt [ f (t)]∗g(t),

where [ f (t)]∗ is the complex conjugate of f (t). For eigenfunctions of d/dt we could abbreviate the
inner product as 〈ω ′|ω〉. If we are thinking about discrete time, then the ω values are also discrete,
and we want 〈ω ′|ω〉= δω ′,ω . We will do this as a homework problem to see that the correct scalar
for φω(t) is 1/

√
2π , so that

φω(t) = (1/
√

2π)eiωt .
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Notice that the inner product has two factors of 1/
√

2π , and

〈ω ′|ω〉= (1/2π)
∫

∞

−∞

dt e−iω ′teiωt .

Math tends to split these factors symmetrically between 〈ω| and |ω〉. Enygineering and physics
usually puts the entire factor of 1/2π into |ω〉 so that

x(t) =
∫

∞

−∞

dω x̂(ω)|ω〉=
∫

∞

−∞

(dω/2π)x̂(ω)eiωt

x̂(ω) = 〈ω|x〉=
∫

∞

−∞

dte−iωtx(t).

While this would be the discrete Kronecker δ -function for a discrete time representation, in
the limit that we have continuous time it becomes the Dirac δ -function, δ (ω−ω ′). For any finite
value of ∆ω = ω−ω ′, the integral goes to 0. Actually the convergence of the integral to 0 is tricky,
but you can think about the indefinite integral being ei∆ωt/i∆ω , which is evaluated at endpoints T
and −T . These are so big that ei∆ωT is oscillating so rapidly that it looks like 0.

When ∆ω→ 0, the function δ (∆ω)→∞, but in a very nice way: the area under the δ -function
is 1. For any finite ε , ∫

ω+ε

ω−ε

dω
′
δ (ω ′−ω) = 1.

This also makes integrals involving the δ -function easy,∫
∞

−∞

dω
′ f (ω ′)δ (ω ′−ω) = f (ω).

It just picks out the value of the rest of the integrand when its argument is 0.
If this doesn’t make sense, don’t worry. You’ll prove all of this in homework.
As a note, we’ll do one more quick thing with inner products. First notice that ∑ω ′ |ω ′〉〈ω ′| be-

haves like the identity matrix for functions. For example, if f (t) can be expressed as ∑ω f̂ (ω)|ω〉,
then

∑
ω ′
|ω ′〉〈ω ′| f 〉= ∑

ω ′
∑
ω

|ω ′〉〈ω ′| f̂ (ω)|ω〉.

Remember that f̂ (ω) is just a scalar expansion coefficient that we can more around to get the inner
product 〈ω ′|ω〉,

∑
ω ′
|ω ′〉〈ω ′| f 〉= ∑

ω ′
∑
ω

f̂ (ω)|ω ′〉〈ω ′|ω〉= ∑
ω ′

∑
ω

f̂ (ω)|ω ′〉δω ′,ω .

The δ -function means that one of the sums goes away, finally giving

∑
ω ′
|ω ′〉〈ω ′| f 〉= ∑

ω

f̂ (ω)|ω〉= f (t).
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Since this is true for any function f (t) that can be expressed in the basis of |ω〉, we conclude that
∑ω |ω〉〈ω| can be used as an identify operator for functions.

We can use this property to calculate the inner product 〈 f |g〉 for two functions f (t) and g(t) as

〈 f |g〉= 〈 f |
[
∑
ω

|ω〉〈ω|
]
|g〉= ∑

ω

〈 f |ω〉〈ω|g〉.

The inner product 〈ω|g〉 = ĝ(ω). The inner product 〈 f |ω〉 is the complex conjugate of 〈ω| f 〉 =
f̂ (ω). Therefore, 〈 f |ω〉= f̂ ∗(ω). This means that

〈 f |g〉= ∑
ω

f̂ ∗(ω)ĝ(ω).

If f (t) is pure real, then f̂ ∗(ω) = f̂ (−ω), and

〈 f |g〉= ∑
ω

f̂ (−ω)ĝ(ω).

Returning to our problem, our plan is to write each of our time domain functions as a sum of
eigenfunctions.

x(t) = ∑
ω

x̂(ω)|ω〉.

β (t) = ∑
ω

β̂ (ω)|ω〉.

The terms x̂ and β̂ are just the expansion coefficients. Putting this expansion into the starting
equation,

(d/dt)∑
ω

x̂(ω)|ω〉= ∑
ω

β̂ |ω〉>−α ∑
ω

x̂(ω)|ω〉.

Now we can eliminate the time derivative in favor of the eigenvalue,

∑
ω

(iω +α)x̂(ω)|ω〉= ∑
ω

β̂ (ω)|ω〉.

Remember that what we know is β (t), which means that we should be able to figure out the
expansion coefficients β̂ (ω). We want to solve for the output expansion coefficients x̂(ω). We can
do this for a particular value ω ′ by taking the inner product,

∑
ω

(iω +α)x̂(ω)〈ω ′|ω〉= ∑
ω

β̂ (ω)〈ω ′|ω〉.

(iω ′+α)x̂(ω ′) = β̂ (ω ′).

x̂(ω) = (iω +α)−1
β̂ (ω).

We can write down the formal solution,

x(t) = ∑
ω

x̂(ω)|ω〉.
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For continuous time, the sum becomes an integral, with details in the homework,

x(t) = (1/2π)
∫

∞

−∞

dω(iω +α)−1eiωt
β̂ (ω).

Substituting the inner product that gives us the expansion coefficient β̂ (ω),

x(t) = (1/2π)
∫

∞

−∞

dω(iω +α)−1eiωt
∫

∞

−∞

dt ′e−iωt ′
β (t ′)

We will next change the order of the integrals. We can usually do this for physical systems. We
will always be able to do it in this class.

x(t) =
∫

∞

−∞

dt ′
1

2π

∫
∞

−∞

dω
exp[iω(t− t ′)]

iω +α
β (t ′).

Let’s think of this as a convolution or a filter,

x(t) =
∫

∞

−∞

dt ′H(t− t ′)β (t ′),

where the response function is

H(t− t ′) =
1

2π

∫
∞

−∞

dω
exp[iω(t− t ′)]

iω +α
.

Take a step back and breathe after the math blizzard. We have an output x(t) that comes from
an ODE model for a system that is driven by input β (t). In a causal universe, x(t) should only
depend on the input at times before t,

x(t) =
∫ t

−∞

dt ′H(t− t ′)β (t ′).

Plot twist! Our integral doesn’t stop at t. The integral goes to infinity. What are the possibilities?

1. We made a math mistake somewhere.

2. The universe (or our model for it) is not causal.

3. There is something special about the response function H(t) for causal systems.

Spoiler alert: it’s the last one. Response functions for classical causal systems are only non-
zero for responses to inputs in the past. In other words, if the response function H(t − t ′) is the
response of the system at time t to an input at time t ′, then H(t− t ′) must be 0 for t < t ′. Next class
we’ll show this by doing the integral for our system’s response function.



Chapter 3

The Laplace Transform and Complex
Variables

We left ourselves with the puzzle of the response function,

H(t) = (1/2π)
∫

∞

−∞

dω
eiωt

iω +α
.

We’ll factor the i from the denominator,

H(t) =
1

2πi

∫
∞

−∞

dω
eiωt

ω− iα
.

Much of math depends on multiplying by 1 in an interesting way (as we did previously using
1 = ∑ω |ω〉〈ω|) or by adding 0 in an interesting way. Here well add 0 to the integral in a way that
changes the integration from a line integral to an integral over a closed contour.

We start by thinking about ω in the complex plane. We can write ω = u+ iv, where u and v are
pure real, u = ℜ(ω) is the real part of ω , and v = ℑ(ω) is the imaginary part of ω . The exponential
factor in the integrand is eiωt = ei(u+iv)t = eiute−vt . The line integral to evaluate is

H(t) = lim
U→∞

(2πi)−1
∫ U

−U
du

eiute−vt

u+ i(v−α)
.

At the end of the line at U , for t > 0, we’ll take a left turn. Call this integral A/2πi,

A = lim
V→∞

∫ V

0
dv

eiUte−vt

U + i(v−α)
.

We care about the magnitude of A,

|A|= | lim
V→∞

∫ V

0
dv

eiUte−vt

U + i(v−α)
| ≤

∫ V

0
dv

|eiUte−vt |
|U + i(v−α)|

,

8
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since a very reasonable theorem tells us that the absolute value of an integral is no larger than the
integral of the absolute value of the integrand. Next, since |U + i(v−α)| ≤ |U |, and |eiUt |= 1,

|A| ≤ lim
V→∞

∫ V

0
dv

e−vt

|U + i(v−α)|
≤ (1/U)

∫ V

0
dve−vt

Finally we have an integral we can do!

|A| ≤ 1/Ut.

Remember that we are taking the limit U→∞. For any finite t, 1/Ut→ 0, which means that A = 0.
Now we turn left again and call this line integral B/2πi, with magnitude

|B|= | lim
U,V→∞

∫ −U

U
du

eiute−Vt

u+ i(V −α)
|.

Here we add the absolute value inside the integral and use |u+ i(V−α)| ≥ |V−α|. Then |V−α|=
V |1− (α/V )|, and in the limit that V → ∞, α/V → 0. Therefore the magnitude of B is

|B| ≤ | lim
U,V→∞

∫ −U

U
du

|eiute−Vt |
|u+ i(V −α)|

| ≤ e−Vt

V
|
∫ −U

U
du1|.

This is another integral that is easy,

|B| ≤ lim
U,V→∞

e−Vt(2U/V ).

If U and V approach ∞ together, then 2U/V → 2, and |B| ≤ 2e−Vt . For finite t, limV→∞ 2e−Vt = 0,
and |B|= 0.

We take another left turn to close the circuit, adding on C/2πi, with

C =
∫ 0

V
dv

e−iUte−vt

−U + i(v−α)
.

Notice that C = A∗, so C = 0 as well. This means that

H(t) = H(t)+(A+B+C)/(2πi) = (1/2πi)
∮

eiωt/(ω− iα),

where the
∮

means that the integral is over a closed contour. The contour we are considering is
the large loop across the real axis, then counterclockwise into the upper imaginary plane and back
down and around.

We will stop for another puzzler. Suppose that we have a function F(ω) with derivative
(d/dω)F(ω) = f (ω). We do an integral over a closed loop, starting at some value ω0 and ending
at the same point. Over that loop, we want to evaluate the integral

∮
dω f (ω). In general, it should

be true that ∫
ω1

ω0

dω f (ω) = F(ω)|ω1
ω0

= F(ω1)−F(ω0).
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For the closed loop, then, should we get F(ω0)−F(ω0) = 0?
The error we’ve made is that the endpoint isn’t ω0. Instead, if we write ω0 in terms of a

magnitude |ω0| and a phase φ , ω0 = |ω0|eiφ , our ending point has accumulated a phase of 2π ,
ω1 = |ω0|ei(φ+2π). For some functions, F(ω0) = F(ω1). For these functions, the contour integral
is 0. For many functions, though, F(ω0) 6= F(ω1), and the contour integral has a non-zero value.
For example, think about F(ω) = ω1/2, and for simplicity choose ω0 = 1. In this case, F(ω1) =
(e2πi)1/2 = eπi =−1, F(ω0) = 1, and the contour integral gives −2.

What type of function F(ω) contributes nothing to the contour integral? Suppose that F(ω) =
ωn where n is any integer. Then F(ω1) = |ω0|nen(φ i+2πi = |ω0|nenφ ie2nπi = F(ω0). A function that
can be expressed as a sum of positive or negative integer powers never contributes to a contour
integral. Fractional powers can contribute, though, because when n is not an integer, e2nπi 6= 1.

A very special type of function F(ω) that can contribute is F(ω) = ln(ω) because ℑ ln(ω)
is equal to the phase. For this function around a contour starting at ω0 = |ω0|eiφ and ending at
ω1 = ω0e2πi,

F(ω1)−F(ω0) = ln(|ω0|)+2πi+φ i− ln(|ω0|)−φ i = 2πi.

Remember that F(ω) is integral. The integrand in the contour integral is f (ω) = (d/dω)F(ω).
For F(ω) = ln(ω), f (ω) = 1/ω . And the contour integral for H(t) has something like 1/ω in the
denominator.

Returning to the contour integral for H(t),

H(t) = (1/2πi)
∮

dωeiωt/(ω− iα).

To make things simpler, change variables to z = ω− iα , with

H(t) =
e−αt

2πi

∮
dzezt/z.

Then we do a power series expansion about this point. If we think about the contour for ω starting
at 0 then making a big counterclockwise loop, then the contour for z starts at z0 =−iα and ends at
z1 = z0e2πi.

We can do a series expansion of ezt = ∑
∞
n=0(zt)

n/n! and integrate term by term,

H(t) =
e−αt

2πi

∮
dz(1/z)

∞

∑
n=0

zntn/n! =
e−αt

2πi

∞

∑
n=0

(tn/n!)
∮

dzzn−1.

From our work before, we know that all the integer terms give 0 except for the term with n = 0,
integrating 1/z, which gives a factor of 2πi. The factor t0/0! = 1. Therefore the response function
for t > 0 is

H(t) = e−αt .

What about for t < 0? In this case, we follow the same logic of adding 0 to the integral, but
instead of closing in the upper half plane we have to close in the lower half plane to make eiωt
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small. We end up with a clockwise rather than counterclockwise integral,

H(t) = (1/2πi)
∮

dωe−iω|t|/(ω− iα) = (1/2πi)
∮

dω.

We can think about a power series expansion again. For any value of ω in the lower half plane,
write ω0 = ω− iα , and consider nearby points ω + z. For these points,

1/(ω + z− iα) = 1/(ω0 + z) = 1− (z/ω0)+(z/ω0)
2− (z/ω0)

3 + . . . ,

which is a convergent series when |ω0|> 0. The smallest magnitude of ω0 is for ω = 0, |ω0|= α .
Provided that α > 0, we have a convergent series everywhere in the lower half plane, and all the
powers of z are positive integers. There is no contribution to the contour integral, and H(t) = 0 for
t < 0.

For Laplace transforms, instead of λ = iω , we use λ = s for the eigenvalue. In other words,
s = iω , or ω =−is. The forward transforms are

F [ f (t)] = f̂ (ω) =
∫

∞

−∞

dte−iωt f (t)

L [ f (t)] = f̃ (s) =
∫

∞

−∞

dte−st f (t).

The inverse transforms are
f (t) = (1/2π)

∫
∞

−∞

dω eiωt f̂ (ω)

f (t) = (1/2πi)
∫ i∞

−i∞
dsest f̃ (s) = (1/2πi)

∮
dsest f̃ (s).

For the inverse Laplace transform for positive time, we close the contour in the left half-plane. For
positive time, we close the contour in the right half-plane.

Nothing in the definition of the Laplace transform requires that we start the time integral at 0.
For an initial value problem, we essentially are saying that f (t) = 0 for t < 0 and then start the
integral at 0.

If we think of a Laplace space eigenfunction of d/dt as a normalized version of est , then the
eigenvalue is s. This means that there is a correspondence between d/dt in the time domain and s
in the Laplace domain. We will look at two examples.

First, consider time displacement, f (t +a). A Taylor series for f (t +a) around f (t) is

f (t+a)= f (t)+a(d/dt) f (t)+(a2/2)(d/dt)2 f (t)+(a3/3!)(d/dt)3 f (t)+. . .=
∞

∑
n=0

(an/n!)(d/dt)n f (t).

If d/dt were a scalar, we could write the sum as an exponential,

∞

∑
n=0

(an/n!)(d/dt)n = exp[a(d/dt)].
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We can do the same for operators if we just say to ourselves that the series expansion defines the
meaning of the exponential. Therefore we find that

f (t +a) = ea(d/dt) f (t).

For the Laplace transform,

L [ f (t +a)] =
∫

∞

−∞

dt e−st f (t +a).

Changing variables to u = t +a, st = su− sa,

L [ f (t +a)] =
∫

∞

−∞

dt e−su+sa f (u) = eas f̃ (s).

To summarize, f (t +a) = ea(d/dt) f (t) and L [ f (t +a)] = easL [ f (t)].
We similarly look at L [(d/dt) f (t)]. Here we consider an initial value problem where f (t) = 0

for t < 0, and then we change f (t) to f (0) at t = 0. This is done by integrating by parts,

L [(d/dt) f (t)] =
∫

∞

0
dte−st(d/dt) f (t) = e−st f (t)|∞0 + s

∫
∞

0
dt e−st f (t) =− f (0)+ s f̃ (s).

Again, the (d/dt) in the time domain becomes a factor of s in the Laplace domain.
An important property of the Laplace transform is the convolution theorem. The convolution

f ?g(t) is defined as

f ?g(t) =
∫ t

dt ′ f (t− t ′)g(t ′).

Usually we are interested in initial value problems where f (t) = g(t) = 0 for t = 0 and the system
turns on at t = 0, in which case the starting point of the integral is t = 0. Note that for a linear
system with response function H(t), the response x(t) to an input β (t) is x(t) = H ?β (t).

The Laplace transform of a convolution is

L [ f ?g(t)] =
∫

∞

0
dt e−st

∫ t

0
dt ′ f (t− t ′)g(t ′).

Changing variables from t and t ′ to t− t ′ and t ′ and multiplying by 1 = est ′e−st ′ ,

L [ f ?g(t)] =
∫

∞

0
dt ′e−st ′g(t ′)

∫
∞

0
d(t− t ′)e−s(t−t ′) f (t− t ′) = f̃ (s)g̃(s).

For a linear system, the response in Laplace space is x̃(s) = H̃(s)β̃ (s).
Now a few notes on the inverse Laplace transform. Suppose we are working on an initial value

problem with step input, β (t) = β0 for t > 0 and β (t) = 0 for t < 0. The Laplace transform is

β̃ (s) =
∫

∞

0
e−st

β0 = β0/s.
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When we go to do the inverse transform, though, we notice that the pole at s = 0 lies on the
integration contour. What do we do? The answer depends on the physical interpretation of the
problem. Here, our convention is that everything dies. We don’t allow an input that stays on
forever. Instead, we take an input of the form β (t) = β0e−εt and take the limit ε → 0. For this
input,

β̃ (s) = β0/(s+ ε),

and the pole is inside the integration contour. Therefore for t > 0 when we close the contour on
the left, we get the full value of the pole, β (t) = β0. For t < 0, we close the contour on the right,
there are no poles, and β (t) = 0. Some texts will tell you to “shift the contour to the right of the
imaginary axis” or “shift the contour to the right of any poles”, but really you have to know how
the equations correspond to the physical system to be sure about what to do. And you also have to
know that for negative t you close on the right.

Anywhere that a function is well behaved, you can move an integration contour without affec-
tive the result. This means that for a function with multiple poles, you can evaluate their contribu-
tions separately,

(1/2πi)
∮

est/(s+α)(s+β ) = e−αt/(−α +β )+ e−β t/(−β +α).

For a second-order pole 1/(s+α)2, you can take the limit as β → α. More generally, for

(1/2πi)
∮

f (s)/(s+α)n

where f (s) is well behaved for s close to s = −α , the solution is to do a series expansion of f (s)
around this point. The only term that contributes is [1/(n−1)!](d/ds)n−1 f (s)|−α .

And that is it for the theory of Laplace transforms.



Chapter 4

Signal Transduction Cascades and
MAPK Signaling

We have made a hypothesis that cells exposed to a weak stimulus will exhibit linear response. Next
we made a model for the response function based on the idea that the most important step in the
cell’s response is activation and deactivation of a signaling molecule. The model has only two
parameters. One is the deactivation rate α to return the signaling molecule to the inactive state.
The other parameter was the activation rate constant, which is subsumed into the activation rate β .
Here will will use the resulting system response function H(t) = exp(−αt) to predict the response
of the cell to different inputs.

Usually we are concerned about a few different types of input:

• δ -function input, β (t) = β0δ (t);

• exponential input, β (t) = β0ke−kt ;

• step-function input, β (t) = β0Θ(t ≥ 0);

• oscillating input, β (t) = β0 cos(ωt) = β0ℜeiωt .

The step-function input introduces the logic function Θ(x) which is 1 if the argument x is true
and 0 if false. The oscillating input could more generally be cos(ωt +θ) where θ is a phase shift,
for example θ =−π/2 giving sin(ωt) rather than cos(ωt). Usually an oscillating input is applied
for a long time, making it more natural to take the phase shift as 0. Often it simplifies calculations
to write cos(ωt) = ℜeiωt .

The δ -function input and the exponential input are normalized to have the same integrated area
β0. The step-function input and oscillating input are normalized to have the same amplitude β0.

From before, the system dynamics are

ẋ(t) = β (t)−αx(t).

14
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We take boundary conditions that the system is prepared at time 0 in state x(0). Applying the
Laplace transform,

sx̃(s)− x(0) = β̃ (s)−α x̃(s);

x̃(s) = x(0)/(s+α)+ β̃ (s)/(s+α);

x(t) = x(0)e−αt +
∫ t

0
dt ′ e−α(t−t ′)

β (t ′).

Notice that the effect of the preparation is entirely through the transient term x(0)e−αt . This
is a feature of linear response: the system response is the simple sum of the decay of the time 0
value and the response to the applied input. If we prepare the system at time 0 and then apply no
input (β (t) = 0), we can measure the decay of the transient and use this to determine the value of
the single parameter. Our model also says that the decay rate is the same regardless of the value of
x(0). From here on, unless explicitly mentioned, we will assume for simplicity that x(0) = 0.

For δ -function input, β (t) = β0δ (t), we use the convention that β̃ (s) captures all of the input,
with the δ -function shifted infinitesimally to the right of the origin t = 0. Alternatively, δ (t) can be
represented as fast exponential input, δ (t) = limk→∞ ke−kt . In either case, δ̃ (s) = 1, x̃(s) = β0H̃(s),
and x(t) = β0H(t), a general result for any linear system with response function H(t). In our case,
H(t) = e−αt , and we can use the response to a δ -function input to measure the response function.

For step-function input, β (t) = β0Θ(t > 0), and β̃ (s) = β0/s. In Laplace space,

x̃(s) = β0/s(s+α).

Taking the inverse Laplace transform with our new-found skills,

x(t) =
∫ i∞

−i∞
(ds/2πi)β0est/s(s+α).

We remember that the term s = 0 in the denominator should really be the factor s+ ε for a step
function that decays infinitesimally slowly (ε → 0+), pushing the pole at 0 just inside our contour.
We then do the integral,

x(t) = β0[(1/α)+ e−αt/(−α)] = (β0/α)(1− e−αt).

As t→ ∞, the system goes to steady-state value β0/α .
When the input approaches a constant value at long time, limt→∞ β (t) = β0, a system with

dissipation will have limt→∞ ẋ= 0. A non-dissipative system will not necessarily have this property.
For example, a perfect spring will continue to bounce. My car in graduate school had worn out
shock absorbers and it would bounce forever when I went over a bump. A postdoc who got a real
job at a scientific contracting company sold it to me for $100 in 1989 or so, and I decided that any
repair that cost more than $100 wasn’t worth it. So, instead of a gas pedal it just had the metal bar
to push, it had lost its paint at some point and was just primer brown, and instead of a dashboard
it had a layer of astroturf. Also the door locks were broken and any key would open them. For a
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while I think only two of the four spark plugs were working, which made me late and greasy for a
blind date when I had to put in new spark plugs on the side of the road. The actual key was required
to start the car, and to save space on my keychain I just left it tied next to driver’s seat. When I got
my PhD, I tried to sell the car for $100 but no one would buy it. Then I tried to give it away but no
one would take it. Finally I parked it in front of a friend’s apartment and left the key on his desk
at work. He drove it for a while but then it broke down on the freeway. He got out and just left it
there.

Meanwhile back at the ranch, limt→∞ ẋ(t) = 0 = β0−αx(t), and limx→∞ x(t) = β0/α . This is a
useful check on our math for the actual system, where we obtained x(t) = (β0/α)(1− e−αt). It is
a good sign that the full solution agrees with the expected long-time behavior.

Finally, the oscillating input, β (t) = β0 cos(ωt) = β0ℜeiωt . The input in Laplace space is

β̃ (s) = β0

∫
∞

0
dt e−st

ℜeiωt .

Since the rest of the integrand is real, we can move the ℜ operator outside the integral (the sum of
the real part is the real part of the sum),

β̃ (s) = β0ℜ

∫
∞

0
dt e−(s−iω)t = β0ℜ1/(s− iω) = β0s/(s2 +ω

2).

The output is then
x̃(s) = β0s/(s+α)(s− iω)(s+ iω).

We have simple poles at −α and ±iω . As usual, the poles on the imaginary axis are shifted just
inside the contour, equivalent to a physical system that switches of as t→∞ with input e−εt cos(ωt).

The time-domain output is the sum of the contribution from each pole,

x(t) =
∫ i∞

−i∞
(ds/2πi)β0sest/(s+α)(s− iω)(s+ iω).

We’ll write x(t) = xα(t)+xω(t) where xα is the contribution from the real pole at −α and xi is the
contribution from the imaginary poles at ±iω .

The pole at s =−α gives a decaying contribution,

xα(t) = β0(−α)e−αt/(−α− iω)(−α + iω) = β0αe−αt/(α2 +ω
2).

In the limit that the input frequency ω is slow compared to the system response time α , 1/(α2 +
ω2)→ 1/α2, and xα(t)→−(β0/α)e−αt .

The pure imaginary poles give an oscillating contribution,

xω(t) = β0(iω)eiωt/(iω +α)(2iω)+β0(−iω)e−iωt/(−iω +α)(−2iω).

xω(t) = (β0/2)[eiωt/(α + iω)+ e−iωt/(α− iω)].
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It is excellent to see that the response is the sum of an imaginary number and its complex conjugate,
which gives a real response. The response of a physical system should always be real.

The way to make progress is to write α± iω as a complex number with magnitude
√

α2 +ω2

and phase ±iφ . Now think about this; it is a very standard transformation between Cartesian
and polar coordinates. If a+ ib and reiφ are the same number in Cartesian and polar coordinates,
then tan(φ) = b/a. Here we have a+ ib = α + iω and we want to find φ . The inverse is φ =
tan−1(b/a) = tan−1(ω/α). For very slow input compared to the system response, ω/α → 0, and
φ → 0. For very fast input compared to the system response, ω/α → ∞, and φ → π/2.

Continuing with our solution,

xω(t) = (β0/2
√

α2 +ω2)(eiωt−iφ + e−iωt+iφ );

xω(t) = (β0/
√

α2 +ω2)cos(ωt−φ).

The oscillating part of the output has the same frequency as the input. This is a general property
for linear systems. Since the output is

x̃(s) = H̃(s)β̃ (s),

if β̃ (s) = 0 for some frequency ω = ℑs, then x̃(s) must also also be missing that frequency. If β (t)
has non-zero weight at a frequency, then x(t) does also as long as the response function H(t) and
respond at that frequency. Sometimes the response function is absent at a frequency; this tends to
happen for inputs that oscillate so fast compared to the system response time that the system sees a
time-averaged input of 0.

Let’s imagine that we’ve been running the oscillating input for long enough that the transients
have all relaxed, leaving just the oscillating part of the output,

x(t) = xω(t) = (β0/
√

α2 +ω2)cos[ωt + tan−1(ω/α)].

For slow input, we get the full response amplitude β0/α , and the output follows the input exactly
because the phase shift is 0,

x(t)→ (β0/α)cos(ωt).

For fast input, 1/
√

α2 +ω2→ 1/ω , and the phase shift→ π/2, giving

x(t)→ (β0/ω)sin(ωt).

For high frequency, we expect that the response amplitude decreases as 1/frequency. The system
is π/2 behind the input, changing the cosine input to sine output. This is what you do naturally
when you push someone (or yourself) on a swing, where for maximum energy transfer you push
just before the change of direction.

How do cells respond to signals in real life? Does a one parameter model really work? Amaz-
ingly, yes. For some reason biologists prefer square waves to sine waves as input. The math is
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more difficult for square waves because they are non-differentiable at the corners. They are easier
to program, though, which reminds me of programming temperature settings for a PCR thermocy-
cler. Many of you have used PCR already. I am older than my sister, and she is so old that when
she was a graduate student PCR had just been invented. They didn’t have thermocyclers back then.
Instead, you had water baths set at different temperatures and you just held your test tube in one
bath and walked over to the other bath.

Yeast cells response to changes in osmotic pressure by signaling through a mitogen-activated
protein kinase (MAPK) cascade. These cascades have 3 levels, each level corresponding to a kinase
that requires phosphorylation for activity. Sometimes biologists go wild with names, and usually
the it Drosophila community has the best names; sometimes they don’t. Here the proteins in the
cascade are called generically MAPKKK, MAPKK, and MAPK, for kinase kinase kinase, kinase
kinase, and kinase. A MAPK cascade very important in cancer is the RAS-RAF-ERK cascade.
In addition to osmotic response, yeast use MAPK cascades for responding to sex pheromones,
changing from proliferative growth through mitosis to mating and sporulation through meiosis.
Sometimes the MAPK components are reused in pathways, with a scaffold protein holding them
in place to prevent cross-talk.

The response of a linear cascade is very easy to calculate. The ODE model is

ẋ1(t) = k1β (t)−α1x1(t);

ẋ2(t) = k2x1(t)−α2x2(t);

. . .

ẋn(t) = knxn−1(t)−αnxn(t).

The output of each level in the cascade is the input to the next level. We will assume that the
system is off at time 0, with xi(t) = 0 for all i = 1,2,3, . . . ,n. The solution in the Laplace domain is

x̃1(s) = [k1/s+α1]β̃ (s);

x̃1(s) = [k2/s+α2]x̃1(s) = [k2k1/(s+α1)(s+α2)]β̃ (s);

. . .

x̃n(s) = β̃ (s)
n

∏
i=1

ki/(s+αi).

The system response function at level n is

H̃n(s) =
n

∏
i=1

ki/(s+αi).

This is messy to convert to the time domain response function H(t) because of all the different
decay constants {αi}. It is very tractable, however, if we assume that the constants are all the same.
This is a reasonable approximation because the dephosphorylation steps are often catalyzed by the
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same phosphatase. Different activation rate constants {ki} don’t matter as much because they just
give an overall prefactor rather than any difference in the shape of the response function.

With the approximation that each level has the same parameters,

H̃n(s) = kn/(s+α)n.

The time-domain response function is

H(t) = kn
∫ i∞

−i∞
(ds/2πi)est/(s+α)n.

With a pole of order n, the approach is to write the numerator as an expansion in terms of (s+α)
and to take the n−1 term to get the residue. Carrying out this plan,

est = e−αtet(s+α) = e−αt
∞

∑
n′=0

(tn′/n′!)(s+α)n′ .

Only the n′ = n−1 term contributes, giving

H(t) = e−αtkntn−1/(n−1)!.

We are happy to see that for a single level cascade, we get our old friend H1(t) = e−αt .
If you think about this function, we have two terms fighting it out. The term tn−1 increases

with t, but the term e−αt decreases with t. Exponentials beat algebraic terms, so limt→∞ H(t) = 0.
The maximum value occurs when (d/dt)H(t) = 0. Usually it’s easier to do these calculations on a
logarithmic scale: if (d/dt)H(t) = 0 and H(t) 6= 0, then [1/H(t)](d/dt)H(t) = 0 = (d/dt) lnH(t).
In this case,

(d/dt)[−αt +(n−1) ln t] = 0;

α = (n−1)/t;

t = (n−1)/α.

For an n-step cascade, the maximum response to an impulse at time 0 is at t = (n− 1)/α . Each
level of the cascade adds a delay of 1/α , which is the timescale to return to the unactivated state.

If we wanted, we could substitute the time t = (n−1)/α back into the expression for xn(t) to
find the maximum response. Instead, we will think about the response to a constant input. For a
constant input, β (t) = β0Θ(t > 0), the response at long time is

lim
t→∞

x(t) =
∫

∞

0
dt ′H(t− t ′)β (t ′) = β0

∫
∞

0
dτ H(τ) = β0H̃(0).

Since H̃n(s) = kn/(s+α)n, the long-time response of xn is β0(k/α)n. If k > α , the activation is
greater than the deactivation at each level and the response increases along the cascade. If k < α ,
the response decreases.

Notice that we calculated a time-domain property directly from the Laplace-domain response
function. There are several other time-domain properties that are easy to generate from the Laplace-
domain response functions. These are moments of the response, and H̃(s) is the moment generating
function. We will see how easy this at our next lecture.



Chapter 5

Generating Functions,
Pharmacokinetics and
Pharmacodynamics

Calculating time domain properties for simple cascades can become somewhat messy. From last
lecture, we saw that the response function for an n-level cascade,

H̃n(s) = kn/(s+α)n,

has the time-domain solution
Hn(t) = kne−αttn−1/(n−1)!.

We also found that the time of maximum response is

tn = (n−1)/α.

If we want to know the amplitude A at maximum response, we can substitute this time back into
the expression for Hn(t),

A = H(tn) = kne−α(n−1)/α(n−1)n−1/α
n−1(n−1)!

A = (kn/α
n−1)(n−1)n−1/en−1(n−1)!.

If we use Stirling’s approximation, n!≈ (n/e)n, the result is

A≈ kn/α
n−1.

There are other more useful measures of gain, though. We are often interested in the integrated
response, also known as the area under the curve,

AUC =
∫

∞

0
dt x(t).

20
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For this chapter, we will define the gain as the ratio of the area under the curve for the response
x(t) normalized by the area under the curve for the input. Note that∫

∞

0
dt f (t) = lim

s→0

∫
∞

0
dt e−st f (t) = lim

s→0
f̃ (s).

We have to take the limit because for functions that go to a long-time non-zero value, | f̃ (s)| → ∞.
We’ve seen this for the unit step function. The gain G is defined as

G≡ lim
s→0

x̃(s)/β̃ (s).

Even when β̃ (0) is ill-defined, for example the unit step or a never ending cosine wave, the ratio
should be well defined by l’Hôpital’s rule. In fact, though, we don’t have to go to the hospital.
Instead, note that

x̃(s) = H̃(s)β̃ (s).

Therefore the gain is
G = lim

s→0
H̃(s) = H̃(0).

The limit goes away because in any universe lacking perpetual motion, H̃(0) is finite. An infinite
value would mean that a finite kick would create infinite response.

Back to our example of an n-level cascade, the AUC gain Gn is

Gn = (k/α)n.

We can generalize this result very easily for the case where each level has its own k and α ,

Gn =
n

∏
j=1

(ki/αi).

We will pause to think about physical meaning. The k terms are the activation rate for each level,
roughly proportional to the abundance of the activating enzyme. The α terms are the deactivation
rate. If we perturb a cell to increase the number of activating enzymes, the gain increases. If we
reduce the number of activating enzymes, the gain decreases. Similarly, we can make cells with
extra or reduced deactivating enzymes, phosphatases for MAPK signaling. This can be done by
transforming or transfecting cells with plasmids that over-express a protein of interest, or by making
knockdowns with shRNA or RNAi or knockouts with mutagenesis or genome editing, these days
using CRISPR/Cas9 systems.

We are also interested in the mean time of response t̄. For any non-negative time-domain
function f (t), we define the mean time of response as

t̄ =
∫

∞

0
dt t f (t)/

∫
∞

0
dt f (t).
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This is related to the time of maximum response the same way that the mean of a probability
distribution is related to the mode, t̄ : argmaxt f (t) as mean:mode. In fact you can think of f (t) as
a weighting function describing how much of the response comes at time t.

If you know the Laplace transform and its derivatives at t → 0+, you can calculate t̄ very
easily. The Laplace transform f̃ (s), or rather its logarithm, ln f̃ (s), is a moment-generating function
because its derivatives give the moments of the corresponding time-domain function f (t). This
proof is important and is usually the subject of quiz or exam questions. Here goes.

(−d/ds) ln f̃ (s) = f̃ (s)−1(−d/ds)
∫

∞

0
dt e−st f (t) = f̃ (s)−1

∫
∞

0
dt t e−st f (t).

lim
s→0

(−d/ds) ln f̃ (s) = lim
s→0

∫
∞

0
dt t f (t)e−st/

∫
∞

0
dt f (t)e−st .

lim
s→0

(−d/ds) ln f̃ (s) =
∫

∞

0
dt t f (t)/

∫
∞

0
dt f (t) = t̄.

For a system response t̄H , the mean time of response is the difference between the mean time
of the output, t̄x and the input, t̄β ,

t̄ = t̄x− t̄β = lim
s→0

(−d/ds) ln x̃(s)− (−d/ds) ln β̃ (s).

For a linear system, x̃(s) = H̃(s)β̃ (s), and

t̄ = lim
s→0

(−d/ds) ln[H̃(s)β̃ (s)]− (−d/ds) ln β̃ (s) = (−d/ds) ln H̃(s)|s=0.

Even if the integrated response is infinite, the integrated response function and its derivatives should
be finite.

For our n-level cascade, we have the simple result

t̄n = (−d/ds) lnkn/(s+α)n|s=0 = n/(s+α)|s=0 = n/α.

Recall that the time of maximum response was (n− 1)/α . Both the time of maximum response
and the mean time of response increase by 1/α at each step.

We can easily generalize t̄ to cascades with unequal parameters,

t̄ = (−d/ds) ln
n

∏
j=1

k j/(s+α) j|s=0 = (−d/ds)
n

∑
j=1
− ln(s+α j)|s=0 =

n

∑
j=1

1/α j.

Each step in the cascade has its own relaxation time 1/α j, and the sum of the relaxation times is
the mean time of response.

This theory also tells us that for a linear cascade, the response time depends only on the de-
activation rates. If we increase the activation rates, we increase the gain, but we do nothing to the
response time. You might think that increasing the activating rate increases the speed of response,
but you know nothing John Snow.
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The second moment tells us about the square duration of response, similar to a variance for a
probability distribution,

t̄2− t̄2 ≡
∫

∞

0
dt (t− t̄)2 f (t)/

∫
∞

0
dt f (t),

where t̄ is the previously defined mean time of response. As a homework, you can prove that

t̄2− t̄2 = lim
s→0

(−d/ds)2 ln f̃ (s).

As before, for linear response x̃(s) = H̃(s)β̃ (s), and we calculate the duration of response as
the duration of the output minus the duration of the input. We have

t̄2− t̄2 = lim
s→0

(−d/ds)2[ln H̃(s)β̃ (s)− ln β̃ (s)] = (−d/ds)2 ln H̃(s)|s=0.

To do these problems, always take the logarithm before taking the derivative, and set s = 0 as the
very last step. If you take the derivative before the logarithm, you’ll still get the correct answer, but
the calculations will be more involved. If you set s = 0 before the end, there’s no s left to take the
derivative.

For our general n-level cascade, the square duration of response is

t̄2− t̄2 = (−d/ds)
n

∑
j=1

(s+α j)
−1|s=0 =

n

∑
j=1

1/(s+α j)
n|s=0 =

n

∑
j=1

1/α
2
j .

Again, the duration depends only on the deactivation rates, not the activation rates.
If the parameters are identical for each level in the hierarchy, then

t̄ = n/α√
t̄2− t̄2 =

√
n/α.

This type of analysis is important for drug action. For example, suppose a drug is given in an
unavailable form, either a pro-drug or a pill form, that has to be converted to an available or active
form, which is then degraded. The active form couples to a biological pathway to have an affect.
We have control over U(t), the unavailable form. A reasonable minimal model for the action of a
dose U0 given at time 0 is

U̇(t) =−cU(t),

Ȧ(t) = cU(t)−dA(t),

ẋ(t) = kA(t)−αx(t).

The parameter c is the rate of conversion from inactive to active form. For a time release medica-
tion, c would be small, roughly 1/(6 hours) to 1/(1 day). For direct delivery into the blood, c could
be faster, 1/(1 min). The parameter d is the rate of degradation by metabolism, excretion, or other
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mechanisms. The pathway activity is represented by x. These dynamics have the Laplace-space
solution

Ũ(s) =U0/(s+ c);

Ã(s) = Ũ(s)c/(s+d) = cU0/[(s+ c)(s+d)];

x̃(s) = Ã(s)k/(s+α) = ckU0/[(s+ c)(s+d)(s+α)].

Now suppose we calculate the AUC gain G for x(t) per initial dose U0. The result is

G = x̃(0)/U0 = ck/cdα = k/dα.

The AUC gain is independent of how fast the drug is converted from inactive to active form. In-
stead, it depends on the rate at which it is degraded and on the standard pathway parameter combi-
nation k/α , activation vs. deactivation rate for the signaling pathway. The mean time of activity t̄
is

t̄ = 1/c+1/d +1/α.

Over the years, we have learned quite a bit about the factors that affect these rates because
they are critical to accurate dosing. Many of the most important enzymes for drug metabolism
are Cytochrome P450’s (CYPs), which use heme as a cofactor for redox reactions. Human ge-
netic variation in CYPs leads to differences in drug activity. If the drug is given as a prodrug, the
CYPs are often responsible for conversion to an active form, represented by the model parameter
c. If the drug is metabolized rather than excreted, the CYPs are often responsible for degrada-
tion, represented by the model parameter d. CYP inhibitors can either stretch out the affect of a
drug (decreasing c and increasing t̄) to the extent that the effective concentration is too low. CYP
inhibitors can also reduce the degradation, decreasing d and resulting in a much higher gain.

Foods can also affect CYP activity. A well-known example is grapefruit, which contains fu-
ranocoumarins and flavonoids that inhibit CYPs, in particular CYP3A4, with a half-life of 1-2
days. Grapefruit has known interactions with almost 100 drugs, including benzodiazepines (Val-
ium, Xanax), ADHD therapeutics (Adderall), and sertraline (Zoloft).
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